Hány kilowattot képes a gép 16-szoros, 25-ös, 32-es, 50-es szélességben tartani?

  • Világítás

Hány kilowatt képes állni a gép 16 amper áram, 25, 32, 40, 50, 63 amper?

Hány kilowatt terhelés képes megszakítani a megszakítót 1, 2, 3, 6, 10, 20 A-ra?

Ezek az automata gépek lehetnek egypólusú, kétpólusú, hárompólusú, 4-pólusúak.

A csatlakozó gépek típusai eltérőek, a hálózat feszültsége 220 Volt és 380 tonna lehet.

Vagyis az elején szükség van ezek meghatározására.

Amper, az aktuális (elektromos) mérése.

Elég, ha az Amps by Volts szoroz, hogy megtudja, hány kW a gép.

Ugyanaz a teljesítmény a jelenlegi erősség szorozva a feszültséggel.

Automatikus 16 amp, feszültség 220 volt, egyfázisú csatlakozás, automata egypólusú:

Ellenőrizze a terhelést 16 x 220 = 3520 watt, lekerekített, és kapunk 3,5 kW.

Automatikus 25 Amper, 25 x 220 = 5 500 W, kerek 5,5 kW.

32 ampere 7040 Watt, vagy 7 kW.

Az 50 wattos Amp 11000 Watt, vagy 11 kW (kilowatt).

Vagy használhat speciális táblákat (a gépek kiválasztásánál), figyelembe véve a kapcsolat teljesítményét és típusát, itt egy az Ön referenciájához.

Hány kilowatt képes állni az elektroautomatikának az aktuális erő különböző értékeire?

Az Ampere gépen feltüntetett áramerőssége azt jelenti, hogy a termikus kioldás akkor nyitja meg az áramkört, ha az áramkör áramköre nagyobb, mint az -10 Amper, 16 Amper, 25 Ampere, 32 Amper stb.

Az egyfázisú hálózathoz egypólusú és kétpólusú megszakítókat használnak, amelyek 1-50 Amp értéket képviselnek (utóbbiak egy lakás vagy ház bevezetője). Ritka kivételek esetén a villamosenergia-ellátó szervezetekkel egyetértésben és műszaki megvalósíthatósággal a háztartások (házak, nyaralók) Automata és magasabb névleges értékek is telepíthetők, de gyakrabban az otthoni mesterek olyan automatákkal szemben helyezkednek el, amelyeknek az áramerőssége 1 és 50 Amper között van, és megfontoljuk a lehetőségeket.

Az 1 A-es megszakító 200 W-ot képes ellenállni. (0,2 kW)

A 2 amp kapcsoló automatikusan 400 W-ot képes ellenállni. (0,4 kW)

A 3 amp kapcsoló automatikusan 700 wattot képes ellenállni. (0,7 kW)

A 6 Amp automatikus kapcsoló 1300 watt (1,3 kW)

A 10 Amp automatikus kapcsoló 2200 watt (2,2 kW)

16 amp árammegszakító 3500 wattos (3,5 kW)

A 20 ampos megszakító 4400 watt (4,4 kW)

25 amp árammegszakító 5500 watt (5,5 kW)

A 32 Amp automatikus kapcsoló 7000 watt (7,0 kW)

A 40 ampos megszakító 8800 watt (8,8 kW)

Az 50 amp árammegszakító 11000 watt (11 kW)

De ez egy hosszú terhelés, amelynek növekedésével a gépnek ki kell kapcsolnia. Rövidzárlat esetén az automata akkor is kikapcsol, ha sokkal alacsonyabb a fogyasztói teljesítmény. Erre az elektromágneses kibocsátás már felelős.

A kilowattban kifejezett teljesítményértékek megegyeznek az egypólusú és a kétpólusú automatákra, amelyeket ugyanazon áramerősségre terveztek egyfázisú 220 voltos hálózatban.

16 Amper hány kilowattot?

Ahogy írt a fûtõhuzal vezetõirõl, amely kihúzta az új, stb. Aztán tényleg "lazítottam" a kábellel - nem számítottam arra, hogy az indukciós tűzhely elfogyna 7,5 kW. És ne dugja be egy standard 16A (Amper) aljzatba. Egy idő telt el, és egy srác azt írta nekem, hogy vágja le a főzőlapot, és azt akarja, hogy dugja be egy rendszeres outlet a 16A? A kérdés valami ilyesmi volt - az aljzat ellenállna a feszültségnek a lemezről? És a 16A mennyit kilowatt? Szörnyű! Nem ragyogtam egy fickót, de egy ilyen kapcsolat égett meg egy lakást! Mindig olvassa el...

Srácok, ha nem tudod, hogy mit és hogyan számítanak ki! Ha az iskolában a fizika, és különösen a villanyszerelő volt rossz! Jobb, ha nem csatlakozol az elektromos tűzhelyek csatlakoztatásához! Hívja meg a megértést!

És most beszéljünk feszültségről és áramról!

Kezdjük a kérdés megválaszolásával - hány 16A watt (kW)?

Nagyon egyszerű - a 220V (Volt) otthoni elektromos hálózat feszültsége elegendő - 220 X 16 = 3520 W, és mint tudjuk, 1 kW-1000 W-ban - 3,52 kW

Ha az iskola fizika képlete P = I * U, ahol P (teljesítmény), I (áram), U (feszültség)

A 220V-os áramkörben a 16A aljzat egyszerűen ellenáll a maximális 3,5kW-nak!

Indukciós főzőlap és aljzat

Az indukciós tűzhely 7,5 kW energiát fogyaszt, mind a 4 égő be van kapcsolva. Fordított sorrendben 7,5 kW (7500 W) / 220V = 34,09 A-nak adódik

Amint láthatja a 34A fogyasztást, a 16A aljzat csak megolvad!

Nos, jól gondolkodik...

Aztán majd a 32-40 A-os aljzatot helyezzem, és csatlakozom egy lemezhez! És nem volt ott, tudnod kell, milyen vezetéket fektetsz a falba, és azt is, hogy melyik gépen mindent megjelenít a pajzsban!

Az a tény, hogy a vezetékeknek is van egy maximális teljesítményküszöbük! Tehát ha 2,5 mm-es keresztmetszetű vezetéket helyeztek el, akkor csak 5,9 kW-os ellenállással bírhat!

Ezenkívül a gépet 32 ​​A-ra és jobbra 40 A-ra kell beállítani. Még egyszer ajánlom ezt a cikket! Részletesebben!

Szóval számíts! Ellenkező esetben a konnektor - a kábelezés elolvad a magas feszültségtől és a tűz könnyen előfordulhat!

    Dmitry 2015. szeptember 19. 18:48

Eszerint az árucikkben bemutatott képlet alkalmas állandó feszültségre, és a mindennapi életben egy változót használnak, vagyis a Fi együttható jelen van.

Dmitry, a szokásos háztartási hivatalok számára ez pontosan így van!

A jó képletnek csak állandó feszültségre alkalmas. A váltakozó (mint a konnektorban) ez lehetővé teszi, hogy becsülje meg a készülék teljesítményét. Elvben elég lesz a háztartási használatra.
Az aljzat nem olvad magas feszültségről, hanem magas (áram) áramról. Melegíti a (vezető) pontosságot. És az elszigetelés a feszültségtől függ. Körülbelül - minél nagyobb a feszültség, annál vastagabb a szigetelés.

Mégis fontosabb a jelenlegi. A vezető keresztmetszete több, áramosabb. Réz vagy alumínium. Külső szigetelés ellenáll az áramnak és a feszültségnek. Vegye figyelembe, hogy csak a feszültség hibás lesz.

Kérlek, kérlek, lehetséges-e egy sodrott vezetéket a falba rakni, és melyik szakaszt a 16 Amp áramára? Nem akarok egy magháló kábelt venni.

Alex, mi a kábel? Hány erősítő

Alex, tudod feküdni, de szükségképpen a hullámosságon, ez csak a lényeg? 16 Amperhuzal, ez mindenről szól! Legalább Amp-et kell számolni 30 - 40-én, vegyen egy 2,5 mm-es rézmetszetet!

Az aljzat nem ég el túlfeszültségről - a feszültség azonos = 220V) És ez az Admin pontosan lezárva van. Másodszor, a vezetékes keresztmetszetet úgy lehet kiválasztani, hogy az alumínium 1 négyzet nagysága 7 amper, réz 1 négyzet - 10 amper. Kimenet = 2,5 négyzetméter rézkábel 25 A-ig. Mindez a háztartás szintjén "számol", de nagyon alkalmas. Ha a készüléket 8 kW-ra kell erõsíteni, akkor ez átlagosan 40 A, ami azt jelenti, hogy 4 rács keresztmetszetû rézhuzalra van szüksége. MOST MEGKÜLÖNBÖZTETVE)) A fentiek szerint a koszinusz phi-ról írtak, megmagyarázom, ha a készüléknek van "VA" feszültség-jelleggörbéje, akkor igen, figyelembe kell venni a kocentrikus phi-t. Például egy 8000 VA áramstabilizátor NINCS 8kW fogyasztó. a háztartások és a háztartási készülékek esetében egy átlagos 0,8-os együtthatót alkalmaznak, ami azt jelenti, hogy 8000 VA 0,8-gyel szorozódik, és átlagosan a stabilizátoron megengedett legnagyobb terhelést kapjuk. A "tíz" típusú fűtőberendezések esetében (például régi elektromos tűzhelyeknél vagy vízforralóknál, de NEM indukciós főzőkhöz) a fi tényező egyenlő az egységgel. Tehát ebben az esetben a 8000 VA-s stabilizátor 8 kW teljesítményű villamos kályhát húz, de nem fog egy csomó különböző elektromos eszközt (vagy indukciós főzőedényt) 8 kW összteljesítményt előidézni, mivel a heap esetében a műszer tényezője már nem 1, hanem 0,8

Az aljzatok kárára jobb és könnyebb használni a csatlakozási pontot. A 40 A-os aljzat értelmetlen) A szokásos háztartási aljzatokat a 6a-ra tervezték, és a határértékük 10-16a (ezek fűtöttek), és ha az áram nagyobb, olvad és ég. Vannak régi szovjet aljzatok az elektromos tűzhelyekhez és ezeknek a socketek modern változataihoz, három csatlakozójuk van, de ezek szintén nem 40a.. Miért van szüksége egy foglalatra egy álló tűzhelyre? A vezetékeket a csavaros csatlakozóblokkhoz vagy jobb, forraszínű forrasztó csavarral és pso-val összekötve kapta a csatlakozó dobozba (a fal mögött), elfelejtette)

Ilyen dolgokat a leghatékonyabban a közvetlen kábel pajzsokkal táplál. A dobozban helyezkedjenek el. A doboz már szép, fa alatt, bármilyen színben. És ne csavaros csatlakozást hozzon létre, hanem vegye le a fedelet a tűzhelyről és csatlakoztassa a bilincseket. Nos, vagy tegye a terminálokat. Ez az, ha az elme már megtette)

Ha a teljes gép 16 amper, akkor a számláló kimenete is legfeljebb 16 amper?

kérlek mondd meg nekem, ha 16A-t és 1-fázist vezettek be a saját házamba, ugyanazt a 16A-ot hagyhatom, de csak 3 fázisba kerülhetek, ez megkönnyíti a terhelést, majd villanyszerelőnk meggondolja a fejemet, és attól tartok, hogy folyamatosan kiütöm egy automata gépet. A házban van egy vízmelegítő, elektromos tűzhely, mikrohullámú sütő, osztott rendszer és egyéb apróságok. Köszönöm előre

A megszakítók aktuális jellemzői

Helló, kedves olvasó a http://elektrik-sam.info honlapon.

Ebben a cikkben megfontoljuk a megszakítók főbb jellemzőit, amelyekről tudniuk kell, hogy megfelelően tudjanak navigálni, amikor kiválasztják őket - ez a megszakítók névleges áram- és időáram-jellemzői.

Hadd emlékeztessem önöket arra, hogy ez a kiadvány egy sor cikket és videót tartalmaz az elektromos védőeszközökről a tanfolyamról Circuit Breakers, RCDs, difavtomaty - részletes útmutató.

A megszakító főbb jellemzőit feltüntetik a tokján, ahol a gyártó márkája vagy márkája, valamint a katalógus vagy sorozatszám is alkalmazásra kerül.

A megszakító legfontosabb jellemzője a névleges áram. Ez a legnagyobb áramerősség (amperben), amely a gépen végtelenül áramolhat a védett áramkör leválasztása nélkül. Ha az áramlás meghaladja ezt az értéket, az automatika aktiválja és megnyitja a védett áramkört.

A megszakítók névleges áramának értékeinek tartománya szabványosított és a következő:

6., 10., 16., 20., 25., 32., 40., 50., 63., 80., 100A.

Az automata névleges áramának értéke amperen van feltüntetve az esetére, és megfelel a + 30˚є környezeti hőmérsékletnek. Növekvő hőmérséklet mellett a névleges áram értéke csökken.

Továbbá, az elektromos táblák automatáját rendszerint több egymás melletti darabban helyezik el egymáshoz közel, ez a hőmérséklet növekedéséhez vezet (az automaták "bemelegednek egymás") és az általuk átkapcsolt áram értékének csökkenését.

Egyes megszakítók gyártói a katalógusokban korrekciós tényezőket adnak meg, hogy ezeket a paramétereket figyelembe vegyék.

A környezeti hőmérséklet hatásáról és a beépített védőberendezések számáról részletesebben lásd a cikket. Miért vált ki egy megszakító a hőtől.

Néhány fogyasztónak az elektromos hálózathoz való csatlakozásakor például hűtőszekrények, porszívók, kompresszorok stb., Az áramkörben röviden előfordulnak áramok, amelyek többször is meghaladhatják a gép névleges áramát. A kábelhez hasonló rövid távú áramfeszültség nem szörnyű.

Ezért annak érdekében, hogy a gép ne kapcsoljon ki minden alkalommal az áramkörben lévő áram rövid, rövid ideig tartó növekedésével, a különböző típusú idő-aktuális jellemzőkkel rendelkező gépeket használják.

Így a következő fő jellemző:

A megszakító időáram-válasz jellege a védett áramkör kioldási idejének függvénye, a rajta áramló áram erősségén. Az áramerősséget a névleges áram I / In értékkel arányosan jelöljük, azaz. hogy a megszakítón átfolyó áram hányszor haladja meg a megszakító névleges áramát.

Ennek a jellemzőnek a fontossága abban rejlik, hogy az azonos névleges értékű automata különféleképpen kikapcsol (az idő-aktuális jellemző típusától függően). Ez lehetővé teszi a téves riasztások számának csökkentését különböző áramfeltételekkel rendelkező megszakítók használatával a különböző típusú terhelésekhez,

Tekintsük az idő-aktuális jellemzők típusát:

- Az A típus (2-3 névleges áramérték) nagy vezetékezési hosszúságú áramkörök védelmére és a félvezető eszközök védelmére szolgál.

- A B típus (a névleges áram 3-5 értékei) olyan áramkörök védelmére szolgálnak, amelyek kis áramerősséggel rendelkeznek, elsősorban aktív terheléssel (izzólámpák, fűtőberendezések, kemencék, világítási hálózat általános használatra). Megmutatkozik olyan apartmanokban és lakóépületekben való használatra, ahol a rakományok többnyire aktívak.

- A C típusú (5-10 névleges áramérték) a mérsékelt indítóáramú berendezések áramkörök védelmére szolgálnak - légkondicionálók, hűtőszekrények, házi és irodai csatlakozók, gázkisüléses lámpák, megnövelt indítóárammal.

- D típusú (névleges áram 10-20 értéke) nagy áramerősségű (kompresszorok, emelő mechanizmusok, szivattyúk, gépek) áramot szállító áramkörök védelmére szolgál. Főként ipari helyiségekbe vannak beszerelve.

- K típusú (8-12 névleges áramérték) induktív terhelésű áramkörök védelmére.

- A Z típusú (a névleges áram 2,5-3,5-es értékei) az áramkörök túlárammal érzékeny elektronikus eszközökkel történő védelmére szolgálnak.

A mindennapi életben a B, C és nagyon ritkán használt megszakítók használatosak, nagyon ritkán D. A jellemzők típusát az automata testén egy latin betű jelzi a névleges áramérték előtt.

A "C16" jelölés a megszakítón azt jelzi, hogy a pillanatnyi kioldó C típusa van (vagyis akkor, amikor az áram a névleges áram 5-10-szerese), és a névleges áram 16 A.

A megszakító időáram-jellemzőjét általában grafikonként adják meg. A vízszintes tengely a névleges áram sokaságát jelzi, és a függőleges tengely jelzi az automata válaszidejét.

A grafikonon található értékek széles tartománya a megszakítók paramétereinek változása, ami a külső és a belső hőmérséklet függvénye, mivel a megszakítót elektromos áram haladja keresztül, különösen vészhelyzetben, túlterhelésáram vagy rövidzárlati áram (SC) révén.

A grafikon azt mutatja, hogy az I / I≤≤ 1 értéknél a megszakító kioldási ideje végtelennek tűnik. Más szavakkal, mindaddig, amíg a megszakítón átáramló áram kisebb vagy egyenlő a névleges áramerősséggel, a megszakító nem lesz kikapcsolva (kikapcsol).

A grafikon azt is mutatja, hogy minél nagyobb az I / In érték (azaz a megszakítón átáramló áram nagyobb, mint a névleges érték), annál gyorsabban kapcsolódik le a megszakító.

Ha egy automatikus megszakítóval áramlik, amelynek értéke megegyezik az elektromágneses kibocsátás működési tartományának alsó határával (3 "B", 5 "C" és 10 "D" esetén), akkor több mint 0.1 másodperc alatt ki kell kapcsolnia.

Ha az áram áramlik egyenlőnek az elektromágneses kioldóegység működési tartományának felső határával (5 "B", 10 "C" és 20 "D" esetén), a megszakító kevesebb mint 0,1 másodpercig lekapcsol. Ha a főáramköráram a pillanatnyi kioldóáramok tartományán belül van, akkor a megszakító kismértékű késleltetéssel vagy időeltolódás nélkül (kevesebb, mint 0,1 s) tér ki.

A következő cikkekben továbbra is figyelembe vesszük a megszakítók jellemzőit, a számításuk és kiválasztásuk módját és stratégiáját, ezért ha nem szeretnél kihagyni új érdekes anyagokat ebben a témában - iratkozz fel a cikk alján található hírlapra.

A cikk megkötésekor részletesen ismertetjük a megszakítók minősítését és aktuális jellemzőit:

A gép elektromos teljesítményének kiszámításához használt táblázat

Az általunk végzett elektromos munka mindig jó minőségű és megfizethető.
Segítséget nyújtunk a megszakítók (megszakítók) és telepítésük kiszámításában.
Hogyan válasszunk ki egy gépet?

Mit kell figyelembe venni?

  • először a gép kiválasztásánál, a teljesítményén,

amelyet a folyamatosan csatlakoztatott teljes teljesítmény határoz meg a gép vezetékének / hálózati terhelésnek a védelemmel szemben. A kapott összteljesítményt a fogyasztási együttható növeli, ami meghatározza az esetleges átmeneti felesleges energiafogyasztást más, eredetileg el nem számolt elektromos készülékek bekötése miatt.

Példa arra, hogyan lehet kiszámítani a terhelést a konyhában

  • elektromos vízforraló (1,5 kW),
  • mikrohullámú sütők (1 kW),
  • hűtőszekrény (500 watt),
  • fülke (100 watt).

A teljes energiafogyasztás 3,1 kW. Az ilyen áramkör védelme érdekében használhatja a 16A készüléket, amelynek névleges teljesítménye 3,5 kW. Most képzeljük el, hogy egy kávéfőzőgépet (1,5 kW) helyeztek a konyhába, és ugyanarra a kábelezésre csatlakoztattuk.
A kábelezés teljes hatalma az összes megadott elektromos eszköz csatlakoztatásakor ebben az esetben 4,6 kW, ami több mint a 16 Amp auto kapcsoló, amely minden készülék bekapcsolásakor egyszerűen kikapcsolódik a felesleges energia miatt, és minden készüléket elhagy, beleértve a hűtőszekrényt is.

Az automata gép kiválasztása a terhelés erejének és a huzal egy részének megfelelően

Az automatikus terhelhetőség kiválasztása

A megszakító kiválasztása a terhelési teljesítménynek megfelelően szükséges a terhelési áram kiszámításához, és válassza ki a megszakító értékét, hogy nagyobb vagy egyenlő legyen a kapott értékkel. A 220V-os egyfázisú hálózatban az áramerősség értékében az áram értéke általában meghaladja a terhelési teljesítmény kilogrammban kifejezett értékét, azaz 5-szerese. ha az elektromos vevő (mosógép, lámpa, hűtő) teljesítménye 1,2 kW, akkor a vezetékben vagy kábelben folyó áram 6,0 A (1,2 kW * 5 = 6,0 A). A 380 V-os számításnál a háromfázisú hálózatokban minden hasonló, csak az áram nagysága 2-szer meghaladja a terhelési teljesítményt.

Pontosabb kiszámolást végezhet, és kiszámolhatja az áramot az ohm I = P / U - I = 1200 W / 220 V = 5.45A törvény szerint. A három fázis esetében a feszültség 380 V lesz.

Még pontosabban kiszámíthatod és figyelembe vennéd a cos φ - I = P / U * cos φ értéket.

Ez egy dimenzió nélküli fizikai mennyiség, amely a váltakozó elektromos áram fogyasztóját jellemzi a reaktív komponens jelenlétének szempontjából a terhelésben. A teljesítménytényező azt jelzi, hogy a terhelésen átáramló váltóáram milyen mértékben mozog a fázisban a hozzá tartozó feszültséghez viszonyítva.
A teljesítménytényező numerikusan egyenlő a fáziseltolás koszinuszával vagy cos φ-val

Az SP 31-110-2003 számú szabályozási dokumentum 6.12. Táblázatából vettük a koszinuszt "Lakó- és középületek elektromos berendezéseinek tervezése és szerelése"

1. táblázat: Cos φ értéke az elektromos vevõtípustól függõen

Elfogadjuk az 1,2 kW-os elektromos vevőt. mint egy háztartási egyfázisú hűtőszekrény 220V-nál, cos φ kerül a 0.75 táblázatból, mint 1-től 4 kW-ig.
Számítsd ki az áramot I = 1200 W / 220V * 0,75 = 4,09 A.

Most a legmegfelelőbb módja annak, hogy meghatározza az elektromos vevő áramát, hogy az áramerősséget a rendszámtábláról, útlevélről vagy használati útmutatóból vegye le. A jellemzőkkel ellátott típustábla szinte minden elektromos készülékre vonatkozik.

A vonal teljes áramát (például a kimeneti hálózatot) úgy kell meghatározni, hogy összeadja az összes elektromos vevő áramát. A kiszámított áramerősség szerint az automata gép legközelebbi névleges értékét nagy irányba választjuk. Példánkban, a 4.09A áram esetén ez egy automatika lesz a 6A-ban.

Nagyon fontos megjegyezni, hogy a megszakító csak a terhelés erejéig történő kiválasztása a tűzbiztonság követelményeinek súlyos megsértése és a kábel vagy huzal tűzszigeteléséhez, és következésképpen a tűz előfordulásához vezethet. Figyelembe kell venni a vezeték vagy kábel keresztmetszetének megválasztását.

A terhelési teljesítménynek megfelelően helyesebb választani a vezető keresztmetszetét. A kiválasztás követelményeit a Villanyszerelők PUE (Villamos Telepítési Szabályok), és pontosabban az 1.3 fejezetben található főszabályozási dokumentum tartalmazza. A mi esetünkben egy otthoni hálózatra elegendő a fentiek szerint kiszámítani a terhelési áramot, és az alábbi táblázatban válasszuk ki a vezeték keresztmetszetét, feltéve, hogy a kapott érték alacsonyabb, mint a szakaszának megfelelő folyamatosan megengedett áram.

Az automatikus gép kiválasztása a kábelszakaszon

A tűzbiztonsági követelmények tekintetében részletesebben meg kell vizsgálni az áramkörök megszakítóinak kiválasztását, a szükséges követelményeket a 3.1 "Villamos hálózatok védelme 1 kV-ig" című fejezetben ismertetjük. Mivel a magánfülkék, lakások, házak 220 és 380V feszültségűek.

Kábel és vezetékes magok számítása

- az egyfázisú hálózatot elsősorban a foglalatok és a világításhoz használják.
380. - ezek elsősorban az elosztóhálózatok - az utcákon áthaladó vezetékek, amelyekből az ágak kapcsolódnak házakhoz.

A fenti fejezet követelményei szerint a lakó- és középületek belső hálózatát védeni kell a rövidzárlati áramoktól és a túlterheléstől. E követelmények teljesítése érdekében a védelmi eszközöket úgynevezett automatikus megszakítók (megszakítók) nevezték ki.

Automatikus kapcsoló "automatikus"

ez egy olyan mechanikus kapcsolóeszköz, amely képes bekapcsolni, az áramkörök normál állapotban áramot végezni, bekapcsolni, előre meghatározott időre vezetni, és automatikusan kikapcsolni az áramokat az áramkör meghatározott rendellenes állapotában, mint például a rövidzárlat és a túlterhelési áramok.

Rövidzárlat (rövidzárlat)

villamos áramkör két pontjának elektromos kapcsolata különböző potenciálértékekkel, amelyeket az eszköz tervezése nem tartalmaz, és megzavarja a normál működését. Rövidzárlat keletkezhet áramszedő elemek szigetelésének meghibásodása vagy nem szigetelt elemek mechanikai érintkezése következtében. Egy rövidzárlat is olyan állapot, amikor a terhelési ellenállás kisebb, mint a tápegység belső ellenállása.

- a megengedett áram normalizált értékének túllépése és a vezető túlmelegedése, a rövidzárlat és a túlmelegedés elleni védelem a tűzbiztonsághoz, a vezetékek és kábelek gyulladásának megakadályozásához és a házban fellépő tűz miatt.

Folyamatosan megengedett kábel- vagy huzaláram

- az árammennyiség folyamatos áramlása a vezetéken keresztül, és nem okoz túlzott fűtést.

A különböző keresztmetszetű és anyagú vezetékek hosszú távú megengedett áramának nagyságát az alábbiakban mutatjuk be: A táblázat egy kombinált és egyszerűsített változat, amely a háztartási áramellátó hálózatokra vonatkozik, az 1.3.6 és az 1.3.7 táblázatokban.

Automatikus áramkör kiválasztása rövidzárlati áramhoz

A rövidzárlat (rövidzárlat) elleni védelemmel ellátott megszakító kiválasztása a vonal végén számított rövidzárlati áramérték alapján történik. A számítás viszonylag összetett, az érték a transzformátor alállomás teljesítményétől, a vezeték keresztmetszetétől és a vezető hosszától függ.

A számítások és az elektromos hálózatok kialakításának tapasztalatai közül a leghatásosabb paraméter a sor hossza, esetünkben a kábel hossza a paneltől a kimenetig vagy a csillárig.

mert lakásokban és magánházakban ez a hossza minimális, akkor ezeket a számításokat általában elhanyagolják, és a "C" karakterű automatikus kapcsolókat választják, természetesen a "B" -t használhatja, de csak a lakásban vagy a házban való világításhoz, mivel az ilyen kis teljesítményű lámpatestek nem okoznak nagy indító áramot, és már az elektromos motorok elektromos berendezéseinek hálózatában a B jellemző tulajdonságú gépek használata nem ajánlott, mivel Lehetséges, hogy a gép a hűtőszekrény vagy a keverőgép bekapcsolt állapotában bekapcsol, ha a bekapcsolási áram ugrik.

Automata kiválasztása a vezető hosszú távú megengedett áramának (DDT) alapján

A megszakító kiválasztása a túlterhelés vagy a túlmelegedés elleni védelem érdekében a kábel vagy kábel védett területére vonatkozó DDT érték alapján történik. A gép értékének kisebbnek vagy egyenlőnek kell lennie a fenti táblázatban feltüntetett DDT-vezető értékével. Ez biztosítja a gép automatikus lekapcsolását, ha a DDT-t túllépik a hálózatban, azaz A készüléktől az utolsó fogyasztóig tartó kábelezés egy részét védi a túlmelegedéstől és a tűz miatt.

Automatikus kapcsoló kiválasztási példa

Van egy csoportunk a paneltől, amelyhez egy -1,6 kW-os mosogatógépet, egy kávéfőzőt - 0,6 kW-ot és egy elektromos vízforralót - 2,0 kW-ot kell kötni.

Tekintsük a teljes terhelést és kiszámítjuk az áramot.

Terhelés = 0,6 + 1,6 + 2,0 = 4,2 kW. Áram = 4.2 * 5 = 21A.

Megnézzük a fenti táblázatot, az általunk számított áram alatt, a vezetékek összes szakasza, kivéve a 1,5 mm2-es rézöt, valamint 1,5 és 2,5 az alumínium esetében.

Válasszon egy rézkábelt, 2,5 mm2 keresztmetszetű vezetékekkel, mert Nincs értelme egy nagyobb keresztmetszetű rézből vásárolni, és az alumínium vezetékek használata nem javasolt, és talán már tilos.

Megvizsgáljuk a gyártott automaták névleges skáláját - 0,5; 1,6; 2,5; 1; 2; 3; 4; 5; 6; 8. 10; 13; 16; 20; 25; 32; 40; 50; 63.

A hálózatunk megszakítója alkalmas a 25A-ra, mivel nem alkalmas a 16A-ra, mert a számított áram (21A.) Meghaladja a névleges 16A értéket, ami akkor indítja el, ha mindhárom elektromos vevő egyszerre bekapcsol. A 32A-os automata nem fog működni, mert meghaladja a 25A által választott kábel DDT-jét. Ez okozhatja a vezető túlmelegedését és ennek eredményeként a tüzet.

Összefoglaló táblázat 220 V egyfázisú hálózat megszakítójának kiválasztására.

Összefoglaló táblázat a 380 V-os háromfázisú hálózat megszakítójának kiválasztásához

* - kettős kábel, két párhuzamosan csatlakoztatott kábel, pl. 2 VVGng 5x120 kábel

találatok

Automatikus gép kiválasztásánál figyelembe kell venni nemcsak a terhelés erejét, hanem a vezető szakaszait és anyagait is.

Kis védett területű hálózatok esetén a rövidzárlati áramoknál lehetőség van olyan megszakítók használatára, amelyek "C"

A gép értékének kisebbnek vagy egyenlőnek kell lennie a hosszú távú megengedett áramvezetővel.

Ha hibát talál, kérjük, válassza ki a szövegtöredéket, és nyomja meg a Ctrl + Enter billentyűt.

Egyéb kapcsolódó cikkek

Érdekes lesz

1. 16A feletti gépnél a standard foglalatok nem működnek.
2. Automatikus 25C-os kábel kiválasztásakor vegye figyelembe a nem leválasztható 1.13 áramot - legalábbis (1.13 * 25 = 28.25A) - ez 4mm ^ 2, figyelembe veszi az 1.45 (hőkioldási küszöbérték) 25C = 36,25A - 6mm ^ 2

Automatikus 25 amp - kábeles résszel rendelkező 10 mm-es metszet a háztartási vezetékekhez.

Anatoly Mikhailov, Az automata 25 amperes, fejjel elegendő kábelszakasz, 6 mm², az aktuális, 34 A rejtett csíkkal és 50 A nyitott. Tehát ne bolondozzátok az embereket!

Igen, a hőszámítás azt mutatja, hogy egy 25 mm-es automata 25 mm-es szelet elegendő, ha csak azért, mert szobahőmérsékleten a 25 amperes automata csak egy 32 amperes automata, és a növekvő kábelszakasz mellett a kábel áramsűrűsége csökken, rejtett rézkábel, 6 mm-es négyzet keresztmetszettel, 40 amper, 32 ampere - ez egy 4 milliméteres négyzet keresztmetszetű kábel névleges áramát jelenti, és rejtett csíkkal rendelkező réz fölött 10 milliméteres négyzetméter már 55 amper, még a DIN-szabvány szerinti legegyszerűbb teszt is és a DIN szabvány szerint gyártott moduláris automaták esetében azt mutatja, hogy 28 * 1.45 = 40,6 amperes, így 6 mm-es keresztmetszet alkalmas, az a helyzet, hogy általában ilyen keresztmetszeteket látunk a lakáshálózatokban: az automata névleges áramerőssége 25 amper - Ez a PUE és a gyártó katalógusai szerint ez a jelenlegi, +30 Celsius fokos környezeti hőmérsékleten és szobahőmérsékleten + 18 Celsius fokon a bimetál lemez hővédelem jobb hűtési feltételeinek köszönhetően az automata idő a jelenlegi jellemzők Az ATA-t eltolják, vagyis szobahőmérsékleten egy 25 amperes automata már 28 amperes automata, valamint az automatának a holtzónája a valós névleges áram 13% -ánál, ahol az automata idő szerint nem garantálja a jelenlegi jellemzőket egy órára, és valójában egyáltalán nem működik néhány óra, vagyis 28 * 1.13 = 31,64 vagy 32 amper A kábelt vagy huzaláramot + 25 ° C-os hőmérsékleten az OLC szerint + 18 ° C-ra emelkedik, 6 E négyzetméter réz már 43 amper, nem 40 amper Igen Igen, figyelembe kell vennie a szomszédos gépek hatását, meg kell melegíteni a gépünket, de csak a terhelés erejének kiválasztásánál, és nem a védelem kiválasztásánál, mert a vonal védelme nem függhet a szomszédos számítsuk ki a 6 mm-es négyzet keresztmetszetű kábel 40 ° 1600 = 0,025-es hõ-együtthatóját, + 18 ° C-ra a kábel 18 + 1024 * 0.025 = 18 +25.6 = + 43.6 Celsius fokot melegít a szobában, ami nemcsak elfogadható, hanem kívánatos a hosszú távú kábelek működéséhez, ahogy az ajánlott A kábelek gyártói szerint a hosszú távú megbízható kábel működésének maximális hőmérséklete nem haladhatja meg a 49 - 51 Celsius fokot. Ha a kábelt kevesebb, mint egy óra alatt másfél alkalommal újratöltik, a készülék időbeli jellemzői szerint a hőmérséklet 18 + (28 * 1,45) ^ 2 * 0.025 = 18 + 41 = + 59 Celsius fok, ami megengedett, de nem kívánatos, mivel a vinil szigetelésű kábel maximális megengedett hőmérséklete +70 Celsius fok, különösen mivel a kábel az 1.13 és 1.45 közötti túlterhelési zónában fog működni, az idő az automatikus leállás sokkal több lesz, mint egy óra. + 35 Celsius-os környezeti hőmérséklet esetén a gép tényleges névleges áramerőssége 25 amperig 24 amper, maximális üzemi árama 24 * 1.13 = 27 amper, majd a maximális üzemi áram mellett a kábel akár 35 + 16,4 = + 51,4 Celsius fokot és 35 + 30 = + 65 Celsius fok, másfélszeres túlterhelés Igen Igen, elég egy 25 mm-es, 6 milliméteres géphez, 10 milliméteres négyzet csak 32-es vagy 40-es ampere esetén szükséges, de most 16 amper 4 mm - es kábelrész, a hiszen szobahőmérsékleten valójában egy 20 amperes automata gép, bár ugyanezen hőszámítás szerint 16 amperes huzalozásra és automatára és 2,5 milliméteres négyzet keresztmetszetre használható, de nem kívánatos, és egy 20 amperes géphez Lehetőség van egy 4 mm-es négyzet keresztmetszetű kábel cserélhető kábelezéssel és 6 milliméteres négyzet keresztmetszettel nem cserélhető kábelezéssel, bár a PUE szerint két párhuzamos vonalat helyezhet el 2,5 mm-es négyzet keresztmetszettel és mentheti.

A huzalok automatikus és áramterheléseinek névleges értékeinek összes értékét nagymértékben túlbecsülik, ezért a PVC szigetelésű kábelek (huzalok, kábelvezetékek) szigetelésének legnagyobb megengedett hőmérséklete +70 Celsius fok. Háromvezetékes kábel esetében, amelynek egyik vezetője védővezeték, az OES táblázatban egy 25 amperes eltemetett lerakódás hosszú távú megengedett áramát találjuk, ez az áramérték a kábelmagok hőmérsékletének + 65 Celsius fokos hőmérséklete + 25 Celsius-fokos hőmérsékletnek felel meg. A PUE kifejezetten 5 Celsius-fokos kábelhőmérsékletet hagy maga után, mivel ha a kábelt + 65 Celsius fok fölé hevítik, akkor a szigetelésen keresztül a szivárgási áramok olyan nagyok, hogy a kábelek további jelentős melegedését eredményezik, és nagyon gyors kábelteljesítményhez vezethetnek. a kábeláramot egy fokkal felmelegítve. (65 - 25) / 25 = 1,6 Ez azt jelenti, hogy amikor a áram 1, 6 amper áramlik, akkor a kábel egy fokkal felmelegszik, vagy (25 * 1.6) + 25 = 65 Celsius fok, ezért megbízható hosszú távú működést kell biztosítani 10 Celsius fokot a környezeti hőmérséklet esetleges emelkedéséhez +35 Celsius fokig, és a kábel túlmelegedését a túlterhelésáramok és a KZ által. A PUE-ben erre a célra a kábel névleges áramának korrekció-csökkentő tényezőit alkalmazzuk, ha a környezeti hőmérséklet + 25 Celsius fok fölé emelkedik, figyelembe véve A kábelosztály kiválasztásakor, majd egy 20 amperes gép esetében, figyelembe véve a jelenlegi érzéketlen zónát a gép névleges áramának 13% -án, kapjuk - (20 * 1.13 * 1.6) = 25 = + 61 Celsius fok, ami sokat jelent. (20 * 1.5 * 1.6) + 25 = 73 Celsius-fok, a túlterhelés mellett a kábel már a környezetben + 35 ° C-ra melegszik, akkor a hőmérséklet + 83 ° C-ra emelkedik Celsius fok és a kábel meghibásodik, és ki kell cserélni, talán igen e gyújtás kábelt - nagy befelé irányuló áramot utechki.Avtomat nem alkalmas otthon vezetékek, és csak akkor lehet alkalmazni a termelési azzal a céllal, hogy mentse kabelya.Avtomat 16 erősítők - (16 * 1,13 * 1,6) + 25 = + 54 ° C hőmérsékleten hőkezeljük. (16 * 1,5 * 1,6) +25 = 63,4 Celsius fok. +35 Celsius fokon a kábel szigetelésének hőmérséklete + 73,4 Celsius fok, a gép részlegesen használható, gyakori túlterhelések és elektromos vezetékek hiányában használható. Az automata gép 13 amperrel - (13 * 1,13 * 1,6) + 25 = + 48,5 fok Celsius és (13 * 1,5 * 1,6) + 25 = + 56,2 Celsius fok. + 35 Celsius foknál a kábel szigetelésének hőmérséklete + 66,2 Celsius fok. A készülék teljes mértékben alkalmas a hosszú távú megbízható működésre a kábel gyakori túlterhelés és magas környezeti hőmérséklet esetén. Hasonlóképpen egy 1,5 mm-es keresztmetszetű kábelhez 6 amperes gépre van szükség.

Ha a 6A 1,5 mm2-enként normális, akkor valószínűleg az egyik olyan tervező vagy installáló, aki egy 16A-os fegyverrel rendelkező csoport helyett 3 db 6A-os csoportot állít elő, amelyek 3-szoros emelkedést mutatnak. A szerelők 3-szoros kereséséhez természetesen jó, de az ügyfél számára rossz.

Az a tény, hogy ez egy becsült számítás, pontosabb számítások azt mutatják, hogy egy 6 amperes gépet kell elhelyezni egy 2,5 mm-es négyzetes kábelre (jól, 10-es erősítés veszélyben van).Van egy EIR szabvány előírja, paramétereit a telepítés legrosszabb körülményei szerint választották ki, a kábelvezeték névleges áramát, amikor lefektetik, különféle építőanyagok esetében nem ismert, még a PUE-ben lévő huzalokra is, a névleges áramok csak akkor nyílnak meg, ha levegőben vagy csövekben nyitnak, beleértve a hullámosságot is, amely flexibilis PVC cső, kábelek és kábelvezetékek, védett huzalok számára, vagyis védőburkolattal rendelkezik a PUE-ben, kétféle módon lehet bedolgozni - a talajban vagy a levegőben nyitva, amit a kábelek gyártóinak ára határoz meg a céljukról - Nyitott fektetés esetén A kábel névleges áramát ebben az esetben a GOST RM EK 60287 - 2 - 1 - 2009 szerint ismert módon lehet önállóan kiszámítani, de a számításhoz ismerni kell a kábelezés hőtechnikai környezetét a hőtechnika szerint A termikus ellenállás címzettje például (12,5-1,14) * méter / watt, a névleges áram kiszámítása 12-17 amper értéket ad a VVG sorozatú hárommagos rézkábellel, amelynek keresztmetszete 2,5 mm, de a hőkezelt beton hőellenállásának speciális értéke amit a kábelvezeték áthalad, nem tudjuk, a PUE szerint a DIN szabvány szerint gyártott moduláris automata gépek legrosszabb feltételei szerint a névleges áram kiválasztása a DIN szabványoknak, vagyis a névleges Lehetőség van egy 8 amperes gép beszerzésére a gyártó gyárától, de beállíthatja, de egyébként egy 6 amperes gépet kell felszerelnie Ha a 10-es erősítőt helyezi a műszaki katalógusba, például az ABB + 20 Celsius-fokos szobahőmérsékleten már 10,5 A-os névleges áramerősséget és egy folyamatosan több mint egy órát meghaladó folyamatos üzemi áramot vesz figyelembe, figyelembe véve a gép érzékenységének zónáját 13% -nál, a gép jelenlegi jellemzői szerint A gyárról 10,5 * 1,13 = 11,865 amperes vagy körülbelül 12 amper, ami elfogadható, azonban ha a gép a névleges áram 1.13-1.45-ös tartományában és a gép névleges áramának 1,45-ös áramánál működik, 10,5 * 1,45 = 15,225, körülbelül 15 ampernyi lesz. 12,5 fok * / watt hőállósággal rendelkezünk, akkor a kábel hőáramlása 15 amper áramlása esetén 15 * 15 * 0,00871 * 2 = 3,91, körülbelül 4 watt, és ez a kábel hőáramlása a kábel melegítésétől a gázbeton a legrosszabb esetben 12,5 * 4 = 50 Celsius fokos hőmérsékletre melegíti teát, szobahőmérsékletet + 20 Celsius fokot, a kábel magjának és héja szigetelésének hőmérséklettől való eltérését a 10 ° C-os számított adatok alapján, innen a kábel maghőmérséklete 20 + 50 + 10 = +80 Celsius fok, a kábel magjának megengedett maximális hőmérséklete PUE + 65 Celsius fokos és a polivinilklorid szigetelés + 70 Celsius fokos hőmérséklete kevesebb, mint egy óra, ha a szoba hőmérséklete magasabb, akkor a kábel magjának hőmérséklete csak nőni fog Igen, a kábel hőálló és képes ellenállni ennek a hőmérsékletnek A független szakértői adatok szerint a VVG sorozat kábelmagszigetelésének tényleges élettartama a kereskedelemben kapható és 40 - 13 A-es sorozatú vinil műanyagból, a kábelmag szigetelés optimális működési hőmérsékletén + 50 Celsius fok 14,5 év, ahelyett, hogy 30 évvel az NTD-re helyezték volna, ahonnan a 6 mm-es automatát a 1,5 mm-es kábel keresztmetszetében érte el, természetesen van egy kivezetés, hogy a kábelezést a hullámosságon kell elhelyezni, de sok villanyszerelő ezt nem teszi meg, Ugyanakkor a számítás szerint minden esetben egy 16 mm-nél nagyobb névleges értékű automata gépet nem lehet a 2,5 mm-es keresztmetszetű kábelre felszerelni, ezért a kábel névleges áramának némely emelkedésével a különböző építőanyagokból készült talppal és a gipszbe helyezett kábel névleges áramának kiszámításánál a kábel névleges áramának kiszámításának módja szerint, amikor a talajban alacsony hővezető képességgel rendelkezik, mivel a kábelek feletti gipszréteg nem szabad 10 mm-es, nem számít, csak 2,5 mm vastagságú vezetékes keresztmetszetű kábellel történő homok- és cementburkolat vasbetonozásánál, a kábel hűtési feltételeinek megfelelően 20 amp áramot szerelhet be, a megfelelő átmérőjű hullámosított vagy PVC csövekbe helyezve a számítás eredményeként 1,5 mm-es négyzet keresztmetszetű vezetékekkel ellátott kábellel a kábel névleges áramerőssége 17 amper, a hõveszteség mértéke 7,8 watt per méter, a vonal megszakítója 10 amper, a névleges folyamatos üzemi áram 12 amper, a hullámosodások belső átmérője a kábelhűtéses levegővel történő körülményektől konvektoros hőátadás esetén 14,1 mm, a hullámosságok belső átmérője 2,5 mm négyzet keresztmetszetű kétvezetékes kábelre alkalmas, a hullámok külső átmérője 16 mm milliméterek csak védőhüvely nélküli vezetékekhez alkalmasak A 2,5 mm-es keresztmetszetű kábel esetében a névleges áram 21 amper, a hőkivonási teljesítmény ezen áramnál 8 watt per méter vonalhosszúság, vezetékes megszakító és 13 amper között, cserélhető kábelezéssel és a jelenlegi 16 amper hosszú ideig tartó túlterhelések hiányában a vonal névleges folyamatos működési áram 15,5 amper, a hullámok belső átmérője 18,3 milliméter és a külső átmérő 25 milliméter. 32 mm külső átmérővel és 24,1 milliméteres, 29-30 amperes belső átmérővel, automata gép 16 amper vagy legfeljebb megengedett 20 amper, a vonal méterenkénti hővesztesége körülbelül 9,2 watt, névleges kábeláram 29-30 amper, 6 milli négyzetméter névleges kábeláram hullámhosszon 36 - 37 amper, hőveszteség vonalhosszonként - 9,6 watt, megszakító - 25 amper, hullámhossz külső átmérője 32 - 40 mm A kábelvezetékek 10 mm-es keresztmetszetének keresztmetszete külső átmérője 40 mm 49 - 50 amper, vonali megszakító - 32 amper, h mérsékletveszteség méterenként - 10,3 watt, a kábel maximális hosszú működési áramlási sebessége +20 ° C 48 ° C-os szobahőmérsékleten. Nomi A kábel aktuális áramát és a hűtést a vezeték egész hossza alatt levegővel való hűtéssel szemben, függetlenül azoknak az anyagoknak a hővezetőképességétől, amelyek mentén a vezetéket lefektetik, a kábel maximális hosszú működési áramánál a hullámhossz külső felületi hőmérséklete nem haladja meg a környezeti hőmérsékletet 10 ° C-nál késlelteti a tömítés veszélyes hőmérsékletre történő felmelegedését, és lehetővé teszi a kábel biztonsági védelmét bizonyos késleltetéssel, vagyis a tűzvédelmi funkcióval, biztosítja A kábel szigetelésének antik védelme a kábelvezető közeg felmelegedése és a kábelszigetelés hosszanti repedései ellen, amikor a kábelvezeték áthalad különböző hővezető képességű anyagokon a különböző szigetelési hőmérsékletű zónák határainál..

Mekkora a megszakítók aktuális jellemzői?

Az elektromos hálózat és az összes készülék normális működése során áramfeszültség áramlik a megszakítón. Ha azonban az áramerősség bármely oknál fogva meghaladja a névleges értékeket, az áramkör megszakad a megszakító kioldóinak működéséből.

A megszakítóra jellemző válasz nagyon fontos jellemző, amely leírja, hogy egy automata válaszideje milyen mértékben függ az automatán keresztül áramló áram arányától az automata névleges áramáig.

Ezt a jellemzõt bonyolítja az a tény, hogy annak kifejezésmódja grafikonok használatát igényli. Az ugyanolyan minősítéssel rendelkező automaták különböző mértékben eltérnek a különböző áramtúllépésektől függően, az automatikus görbe típusától függően (olykor az aktuális jellemzőnek is nevezik), aminek következtében különféle jellemzőkkel rendelkező automaták használhatók különböző típusú terhelésekhez.

Így egyrészről a védelmi áramfüggvényt hajtják végre, másrészt a téves riasztások minimális számát biztosítják - ez a jellemző fontossága.

Az energetikai iparágakban olyan helyzetek vannak, amikor a rövid távú áramnövelés nem kapcsolódik vészhelyzeti üzemmód megjelenéséhez, és a védelem nem reagálhat az ilyen változásokra. Ugyanez vonatkozik a gépekre is.

Ha bármelyik motort, például egy dákószivattyút vagy egy porszívót bekapcsolja, elég nagy beáramlási áram keletkezik a sorban, ami többszörös, mint a normál érték.

A munka logikája szerint a gépnek természetesen meg kell szakadnia. Például a motor elindul a 12 A indítási üzemmódban, és a működési módban - 5. A gép ára 10 A, és 12-re csökkenti. Mi a teendő? Ha például 16 A-ra van állítva, akkor nem világos, hogy kikapcsol, vagy sem, ha a motor elakadt vagy a kábel le van zárva.

Lehetséges megoldani ezt a problémát, ha kisebb áramra helyezik, de azt minden mozgás kiváltja. Ebből a célból egy automata ilyen koncepcióját találta fel, mint "idő-aktuális jellemzője".

Milyen idők, a megszakítók aktuális jellemzői és a köztük lévő különbség

Ismeretes, hogy a megszakító fő kiváltó teste a hő- és elektromágneses kioldók.

A termikus felszabadulás egy bimetál lemez, amely hajlító árammal áramlik. Így a mechanizmus egy hosszú, túlterhelés által kiváltott, inverz késleltetéssel indítható el. A bimetál lemez melegítése és a felszabadulás válaszideje közvetlenül a túlterhelés szintjétől függ.

Az elektromágneses kibocsátás egy magot tartalmazó mágnestekercs, a mágneses mező mágneses mezője egy bizonyos áramerősséggel a magban, ami kiváltja a kioldó mechanizmust - pillanatnyi rövidzárlati művelet történik, hogy az érintett hálózat ne várja meg a termikus felszabadulás (bimetál lemez) felmelegedését az automatában.

A megszakító válaszidejének függvénye a megszakítón átáramló áramra a megszakító időtartamától függ.

Valószínűleg mindenki észrevette a B, C, D latin betűk képét a moduláris gépek házán. Tehát jellemzik az elektromágneses kibocsátás beállított pontjának sokféleségét az automatának a névleges értékére, ami azt jelzi, hogy az idő aktuális jellemzője.

Ezek a betűk a gép elektromágneses kioldásának pillanatnyi áramát jelzik. Egyszerűen fogalmazva, a megszakító kioldási jellemzője megmutatja a megszakító érzékenységét - a legalacsonyabb áramot, amelyen a megszakító azonnal kikapcsol.

A gépek számos jellemzővel rendelkeznek, amelyek közül a leggyakoribbak:

  • - B - 3 - 5 × In;
  • - C - 5-10 × In;
  • - D - 10 és 20 × In között.

Mit jelentenek a fenti számok?

Adok egy kis példát. Tegyük fel, hogy két olyan, ugyanolyan teljesítményű gép van (egyenlő a névleges áramerősséggel), de a válaszadási jellemzők (latin betűk az automata gépen) eltérőek: a B16 és C16 automata gépek.

A B16-nak az elektromágneses terhelés hatótávolsága 16 * (3. 5) = 48. 80A. C16 esetén a pillanatnyi működés pillanatnyi áramlási sebessége 16 * (5. 10) = 80. 160A.

100 A áramerősségnél a B16 automatikusan kikapcsol, de a C16 nem azonnal, de néhány másodperc múlva kikapcsolódik a hővédelem után (a bimetál lemez felmelegedése után).

A lakóépületekben és lakásokban, ahol a terhelések tisztán aktívak (nagy indítóáramok nélkül), és néhány erős motort ritkán kapcsoltak be, a legérzékenyebbek és a leginkább előnyben részesítettek a B karakterisztikával rendelkező automaták. Ma nagyon jellemző a C jellemző, amely szintén használható lakó- és irodaépületek számára.

Ami a D jellemzőit illeti, akkor csak a villanymotorok, nagyméretű motorok és egyéb készülékek táplálására alkalmas, ahol nagy bekapcsolási áramok léphetnek fel. Rövidzárlat esetén is csökkentett érzékenységgel a D jellemzőjű automata ajánlott bevezető választékként egy magasabb AB csoporttal a rövidzárlathoz az esélyek növelése érdekében.

Rendszeresen állapodjon meg arról, hogy a válaszidő a gép hőmérsékletétől függ. Az automatika gyorsabban leáll, ha a termikus szervet (bimetál lemez) felmelegszik. Ezzel szemben, amikor először kapcsolja be, amikor a bimetál automata hideg kikapcsolási ideje hosszabb lesz.

Ezért a grafikonon a felső görbe az automaton hideg állapotát jellemzi, az alsó görbe az automata meleg állapotát jellemzi.

A szaggatott vonal jelzi a 32 A-ig terjedő automaták aktuális határértékét.

A grafikon aktuális jellemzői

A 16-áramú megszakító példáján, amelynek a C áramfelvétele van, megpróbáljuk megvizsgálni a megszakítók válasz jellegzetességeit.

A grafikonon látható, hogy a megszakítón áthaladó áram hatással van a kikapcsolási idő függőségére. Az áramkörben folyó áramlatnak az automata (I / In) névleges áramára gyakorolt ​​sokasága az X tengelyt jelenti, és a válaszidőt, másodpercben, az Y tengelyen.

A fentiek szerint az elektromágneses és a termikus kibocsátás része a gépnek. Ezért az ütemezés két részre bontható. A grafikon meredek része a túlterhelés elleni védelmet (a hőkioldó működését) és a halkabb részt, a rövidzárlat elleni védelmet (az elektromágneses kibocsátás működése) mutatja.

Amint a grafikonon látható, ha a C16 23-as terheléshez van csatlakoztatva, akkor 40 másodpercen belül ki kell kapcsolnia. Ez azt jelenti, hogy ha a túlterhelés 45% -kal megy végbe, a készülék 40 másodperc után kikapcsol.

Olyan nagy áramerősség esetén, amely károsíthatja az elektromos vezetékek szigetelését, a gép azonnal reagálhat elektromágneses kibocsátás miatt.

Ha egy 5 × In (C) áram áthalad a C16 gépen (80 A), akkor 0,02 másodperc múlva működnie kell (ha a gép forró). Hideg állapotban, ilyen terhelés esetén 11 másodpercen belül leáll. és 25 sec. (legfeljebb 32 A és 32 A feletti gépek esetén).

Ha 10 × In áram áramlik a gépen, akkor 0,03 másodperc alatt hideg állapotban vagy kevesebb, mint 0,01 másodperc alatt meleg állapotban kikapcsol.

Például abban az esetben, ha egy áramkörben rövidzárlat van, amelyet egy C16 megszakító véd, és 320 A áram jelenik meg, a megszakító áramkimaradásának ideje 0,008 és 0,015 másodperc között van. Ez kiküszöböli a vészhelyzeti áramkör áramellátását, és megvédi magát a készüléket, amely rövidre zárta az elektromos készüléket és az elektromos vezetékeket, tűz és teljes megsemmisítés miatt.

Olyan gépek, amelyek jellemzői előnyösebbek otthon

A lakásokban, amikor csak lehetséges, a B kategóriás automatákat kell használni, amelyek érzékenyebbek. Ez a gép a túlterhelésből ugyanúgy működik, mint egy C kategóriájú gép. De mi a helyzet egy rövidzárlat esetén?

Ha a ház új, jó elektromos állapotban van, az alállomás a közelben van, és az összes csatlakozás kiváló minőségű, akkor a rövidzárlati áram elérheti az olyan értékeket, amelyeknek elegendőnek kell lenni ahhoz, hogy akár a bemeneti automatát is kiválthassák.

Rövidzárlat esetén kicsi lehet az áram, ha a ház régi, és a hatalmas vonalellenállással járó rossz kábelek (különösen a vidéki hálózatokban, ahol nagy hurokellenállás, fázis-nulla) lép fel - ebben az esetben a C kategóriájú automata gép egyáltalán nem működik. Ezért az egyetlen módja ennek a helyzetnek az, hogy az automatákat a B. típusú jellemzőkkel telepítsük.

Következésképpen a B-típus aktuális jellege határozottan előnyösebb, különösen a dákóban vagy vidéken vagy a régi alapban.

A mindennapi életben célszerű telepíteni a C típust az automaton, és a csoportos vonalak B típusú automatát az aljzatokhoz és a világításhoz, így a szelektivitást figyelni fogják, és a bemeneti automatika nem fog kialudni és "kialudni" egy lakás.